Electrophysiological properties of lumbar motoneurons in the alpha-chloralose-anesthetized cat during carbachol-induced motor inhibition.

نویسندگان

  • M C Xi
  • R H Liu
  • J Yamuy
  • F R Morales
  • M H Chase
چکیده

The present study was undertaken 1) to examine the neuronal mechanisms responsible for the inhibition of spinal cord motoneurons that occurs in alpha-chloralose-anesthetized cats following the microinjection of carbachol into the nucleus pontis oralis (NPO), and 2) to determine whether the inhibitory mechanisms are the same as those that are responsible for the postsynaptic inhibition of motoneurons that is present during naturally occurring active sleep. Accordingly, the basic electrophysiological properties of lumbar motoneurons were examined, with the use of intracellular recording techniques, in cats anesthetized with alpha-chloralose and compared with those present during naturally occurring active sleep. The intrapontine administration of carbachol resulted in a sustained reduction in the amplitude of the spinal cord Ia monosynaptic reflex. Discrete large-amplitude inhibitory postsynaptic potentials (IPSPs), which are only present during the state of active sleep in the chronic cat, were also observed in high-gain recordings from lumbar motoneurons after the injection of carbachol. During carbachol-induced motor inhibition, lumbar motoneurons exhibited a statistically significant decrease in input resistance, membrane time constant and a reduction in the amplitude of the action potential's afterhyperpolarization. In addition, there was a statistically significant increase in rheobase and in the delay between the initial-segment (IS) and somadendritic (SD) portions of the action potential (IS-SD delay). There was a significant increase in the mean motoneuron resting membrane potential (i.e., hyperpolarization). The preceding changes in the electrophysiological properties of motoneurons, as well as the development of discrete IPSPs, indicate that lumbar motoneurons are postsynaptically inhibited after the intrapontine administration of carbachol in cats that are anesthetized with alpha-chloralose. These changes in the electrophysiological properties of lumbar motoneurons were found to be comparable with those that take place during the atonia of active (rapid-eye-movement) sleep in chronic cats. The present results support the conclusion that the neural system that is responsible for motor inhibition during naturally occurring active sleep can also be activated in alpha-chloralose-anesthetized cats following the injection of carbachol into the NPO.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dorsal spinocerebellar tract neurons are not subjected to postsynaptic inhibition during carbachol-induced motor inhibition.

Dorsal spinocerebellar tract (DSCT) neurons in Clarke's column in the lumbar spinal cord of cats anesthetized with alpha-chloralose were recorded intracellularly. The membrane potential activity and electrophysiological properties of these neurons were examined before and during the state of active-sleep-like motor inhibition induced by the injection of carbachol into the nucleus pontis oralis....

متن کامل

The motor inhibitory system operating during active sleep is tonically suppressed by GABAergic mechanisms during other states.

The present study was undertaken to explore the neuronal mechanisms responsible for muscle atonia that occurs after the microinjection of bicuculline into the nucleus pontis oralis (NPO). Specifically, we wished to test the hypothesis that motoneurons are postsynaptically inhibited after the microinjection of bicuculline into the NPO and determine whether the inhibitory mechanisms are the same ...

متن کامل

Relationship between sensory stimuli-elicited IPSPs in motoneurons and PGO waves during cholinergically induced muscle atonia.

Inhibitory postsynaptic potentials (IPSPs) can be produced in masseter motoneurons by sensory stimuli after the injection of carbachol into the nucleus pontis oralis (NPO) of alpha-chloralose-anesthetized cats. We have postulated previously that these IPSPs, which are induced in masseter motoneurons by sensory stimuli, arise as the result of phasic activation of the motor inhibitory system that...

متن کامل

Changes in electrophysiological properties of cat hypoglossal motoneurons during carbachol-induced motor inhibition.

The control of hypoglossal motoneurons during sleep is important from a basic science perspective as well as to understand the bases for pharyngeal occlusion which results in the obstructive sleep apnea syndrome. In the present work, we used intracellular recording techniques to determine changes in membrane properties in adult cats in which atonia was produced by the injection of carbachol int...

متن کامل

Active dendritic integration of inhibitory synaptic inputs in vivo.

Synaptic integration in vivo often involves activation of many afferent inputs whose firing patterns modulate over time. In spinal motoneurons, sustained excitatory inputs undergo enormous enhancement due to persistent inward currents (PICs) that are generated primarily in the dendrites and are dependent on monoaminergic neuromodulatory input from the brain stem to the spinal cord. We measured ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 78 1  شماره 

صفحات  -

تاریخ انتشار 1997